A Dietary Approach to Insulin Resistance and Associated Conditions

Developed in partnership with the National Board of Physician Nutrition Specialists

Faculty

Melina B. Jampolis, MD
Immediate Past President
National Board of Physician Nutrition Specialists
Author, The Doctor on Demand Diet
Los Angeles, California

Disclosures

Dr. Jampolis: Consultant – Prevention Pharmaceuticals; Board of Directors – TerraVia; Stock Shareholder—TerraVia

Learning Objectives

- Discuss the importance of dietary therapy in the prevention and treatment of insulin resistance (IR)
- Explain how specific macronutrients and foods affect IR
- Analyze the latest research on the role of phytonutrients, micronutrients, and the emerging importance of the microbiome in IR
- Discuss specific dietary approaches for diseases associated with IR

Factors Associated with IR

Extrinsic factors
- Diet
- Sedentary
- Obesity
- Toxins
- Medications
 - Immune
 - Psych
 - Statins
 - Thiazides
 - Beta-blockers
 - Anti-retrovirals

Intrinsic factors
- Genetics
- Microbiome
- Sarcopenia
- Aging
- Diseases
 - Pancreas
 - Liver
 - Endocrine
- Ovarian signaling
 - Menarche
 - Pregnancy
 - Menopause
 - PCOS

Does Diet Matter in IR?

VS

PCOS = polycystic ovary syndrome.
Calorie Contribution of Foods in US Diet

<table>
<thead>
<tr>
<th>Food</th>
<th>Calories (cumulative)</th>
</tr>
</thead>
<tbody>
<tr>
<td>French fries</td>
<td>32.4%</td>
</tr>
<tr>
<td>Beer</td>
<td>20.3%</td>
</tr>
<tr>
<td>Cheese</td>
<td>27.6%</td>
</tr>
<tr>
<td>Rolls, buns, muffins, bagels</td>
<td>25%</td>
</tr>
<tr>
<td>Rice</td>
<td>22.4%</td>
</tr>
<tr>
<td>Chips/Popcorn</td>
<td>19.7%</td>
</tr>
<tr>
<td>Pizza</td>
<td>16.8%</td>
</tr>
<tr>
<td>Burgers/Cheeseburgers</td>
<td>13.8%</td>
</tr>
<tr>
<td>Cakes, pastries, donuts</td>
<td>10%</td>
</tr>
<tr>
<td>Soda</td>
<td>7%</td>
</tr>
</tbody>
</table>

Courtesy of Dr. Zhaoping Li.

Healthful Dietary Indexes and IR

Healthy Eating Index: Waist circumference, HOMA-IR, CRP inversely related to adherence; adiponectin direct association

Mediterranean Diet: Strongly reduced risk of cardiometabolic disease

Alternative Healthy Eating Index: Greater adherence associated with MetS reversion mainly with central obesity and high TG

DASH Diet: Reduced fasting insulin independent of weight loss (no benefit FBG or HOMA-IR)

HOMA-IR = homeostasis model assessment of insulin resistance; CRP = C-reactive protein; MetS = metabolic syndrome; TG = triglyceride; FBG = fasting blood glucose.

Macronutrients and IR

Dietary Fat: Composition of Oils

Common Sources of Saturated Fat

Common Sources of Unsaturated Fat

N3 PUFAs
- fatty fish (salmon, mackerel, and sardines)
- flaxseeds
- walnuts
- canola oil

N6 PUFAs
- vegetable oils: sunflower, soybean

MUFAs
- olive oil
- peanut oil
- canola oil
- avocados
- most nuts

PUFA = polyunsaturated fatty acid; MUFA = monounsaturated fatty acid.

Dietary Fat and IR

- Many observational studies do not show an association between total fat intake and insulin sensitivity or risk of diabetes mellitus
- Excess saturated fat induces IR
- Trans fats strongly increase IR
- Unsaturated fats (PUFA, MUFA), especially when substituted for SFA or CHO, improve insulin sensitivity

Avocados and Metabolic Syndrome

MUFA and Diabetes Mellitus

Omega-3 Fatty Acids and IR

Fat Modification and HOMA-IR Status

Effect of dietary fat modification on fasting glucose, insulin and markers of insulin sensitivity and secretion according to tertiles of low, medium, and high HOMA-IR status

Dietary Carbohydrates

- Quantity **and** quality matter
- Added sugar controversial but may contribute to or exacerbate IR
- Fiber improves insulin sensitivity
- Poor diet induces changes in the microbiome, which may increase inflammation, IR, and obesity

Cereal Fiber, GI/GL, and Diabetes Mellitus

Resistant Starch and IR

SSBs and IR

Dietary Protein

- **Protein has weight loss** benefits
 - Satiety, blood sugar control (reduced HOMA-IR), preserves LBM during weight loss
 - Diet x phenotype interaction
 - Protein source matters

Dietary Carbohydrates

- Quantity **and** quality matter
- Added sugar controversial but may contribute to or exacerbate IR
- Fiber improves insulin sensitivity
- Poor diet induces changes in the microbiome, which may increase inflammation, IR, and obesity

Cereal Fiber, GI/GL, and Diabetes Mellitus

Resistant Starch and IR

SSBs and IR

Dietary Protein

- **Protein has weight loss** benefits
 - Satiety, blood sugar control (reduced HOMA-IR), preserves LBM during weight loss
 - Diet x phenotype interaction
 - Protein source matters
Red Meat and IR

<table>
<thead>
<tr>
<th>Fasting Insulin (μU/mL)</th>
<th>Unprocessed Red Meat</th>
<th>Processed Red Meat</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median intake (g/d)</td>
<td>Median intake (g/d)</td>
<td></td>
</tr>
<tr>
<td>16 (n=446)</td>
<td>0 (n=429)</td>
<td></td>
</tr>
<tr>
<td>38 (n=442)</td>
<td>3 (n=475)</td>
<td></td>
</tr>
<tr>
<td>62 (n=475)</td>
<td>6 (n=437)</td>
<td></td>
</tr>
<tr>
<td>103 (n=420)</td>
<td>12 (n=442)</td>
<td></td>
</tr>
<tr>
<td>Model 1 4.66 4.93 4.81 5.38 .0003</td>
<td>Model 1 4.58 4.68 5.25 5.26 <.0001</td>
<td></td>
</tr>
</tbody>
</table>

Red Meat Substitutions

- Effect estimates for changes in biomarkers corresponding to substitution of 1 serving of red meat (total, unprocessed, or processed) with alternative protein foods.

Yogurt and Metabolic Syndrome

<table>
<thead>
<tr>
<th>Associations between yogurt consumption and levels of metabolic factors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-consumers</td>
</tr>
<tr>
<td>----------------</td>
</tr>
<tr>
<td>Median energy contribution from yogurt (kcal)</td>
</tr>
<tr>
<td>HDL 53 53 53.4 .29 .53</td>
</tr>
<tr>
<td>TG 111.2 109.5 104.3 <.001 .01</td>
</tr>
<tr>
<td>Cholesterol 98.7 97.9 96.5 <.001 <.001</td>
</tr>
<tr>
<td>Glucose 83.8 83.2 70.4 <.001 <.001</td>
</tr>
<tr>
<td>HOMA-IR 121.7 120.5 119.8 <.001 <.001</td>
</tr>
<tr>
<td>3.42 3.37 3.17 <.001 <.001</td>
</tr>
</tbody>
</table>

Micronutrients and More

Polyphenols and IR

Green Tea and Glucose Control

Courtesy of Bill Lagakos, PhD.

Resveratrol and IR

Spices and IR

Magnesium and IR

Vitamin D and IR

Probiotics and IR

Advanced Glycation End-Products

Diseases Associated with IR

- Nonalcoholic fatty liver disease
- Polycystic ovarian syndrome
- Obstructive sleep apnea
- Atherogenic dyslipidemia
- Type 2 diabetes mellitus
- Hypoandrogenemia
- Cancer

Diet and Type 2 Diabetes Mellitus

- Diets rich in whole grains, fruits, vegetables (especially leafy greens), legumes, nuts, moderate amount of dairy, and lower in refined grains, red/processed meats, and SSB reduce risk of diabetes mellitus and improve glycemic control in patients with diabetes mellitus.
- Moderate alcohol consumption.
- Optimal macronutrient ratio has not been clearly established
 - Wide range of diet patterns that include nutrient-dense foods suitable.

Diet and Type 2 Diabetes Mellitus

- Foods high in sugar/refined flour (CHO) may induce or amplify
- Replacing those CHO with protein is beneficial
- High-fiber, low sugar/refined CHO
- PREDIMED study

Atherogenic Dyslipidemia

- Values are mean ± SD, = 40. Means without a common letter differ, P < 0.05. The following traits were log-transformed prior to statistical analysis: TG, HDL-C, large VLDL, medium VLDL, small VLDL, total LDL, large LDL, medium LDL, small LDL, and very small LDL. HDL-C = HDL cholesterol; LCHSF = lower carbohydrate, high-saturated fat; LCLSF = lower carbohydrate, low-saturated fat; LDL-C = LDL cholesterol; non-HDL-C = non-HDL cholesterol; TC = total cholesterol.

Atherogenic Dyslipidemia

- Significantly different between groups, P<0.05 (one-way ANOVA). ADMF = alternate-day modified fasting.

Paleo Diet and Type 2 Diabetes Mellitus

- Foods high in sugar/refined flour (CHO) may induce or amplify
- Replacing those CHO with protein is beneficial
- High-fiber, low sugar/refined CHO
- PREDIMED study

Atherogenic Dyslipidemia

- Values are mean ± SD, = 40. Means without a common letter differ, P < 0.05. The following traits were log-transformed prior to statistical analysis: TG, HDL-C, large VLDL, medium VLDL, small VLDL, total LDL, large LDL, medium LDL, small LDL, and very small LDL. HDL-C = HDL cholesterol; LCHSF = lower carbohydrate, high-saturated fat; LCLSF = lower carbohydrate, low-saturated fat; LDL-C = LDL cholesterol; non-HDL-C = non-HDL cholesterol; TC = total cholesterol.

Atherogenic Dyslipidemia

- Significantly different between groups, P<0.05 (one-way ANOVA). ADMF = alternate-day modified fasting.

Paleo Diet and Type 2 Diabetes Mellitus

- Foods high in sugar/refined flour (CHO) may induce or amplify
- Replacing those CHO with protein is beneficial
- High-fiber, low sugar/refined CHO
- PREDIMED study

Atherogenic Dyslipidemia

- Values are mean ± SD, = 40. Means without a common letter differ, P < 0.05. The following traits were log-transformed prior to statistical analysis: TG, HDL-C, large VLDL, medium VLDL, small VLDL, total LDL, large LDL, medium LDL, small LDL, and very small LDL. HDL-C = HDL cholesterol; LCHSF = lower carbohydrate, high-saturated fat; LCLSF = lower carbohydrate, low-saturated fat; LDL-C = LDL cholesterol; non-HDL-C = non-HDL cholesterol; TC = total cholesterol.

Atherogenic Dyslipidemia

- Significantly different between groups, P<0.05 (one-way ANOVA). ADMF = alternate-day modified fasting.

Paleo Diet and Type 2 Diabetes Mellitus

- Foods high in sugar/refined flour (CHO) may induce or amplify
- Replacing those CHO with protein is beneficial
- High-fiber, low sugar/refined CHO
- PREDIMED study

Atherogenic Dyslipidemia

- Values are mean ± SD, = 40. Means without a common letter differ, P < 0.05. The following traits were log-transformed prior to statistical analysis: TG, HDL-C, large VLDL, medium VLDL, small VLDL, total LDL, large LDL, medium LDL, small LDL, and very small LDL. HDL-C = HDL cholesterol; LCHSF = lower carbohydrate, high-saturated fat; LCLSF = lower carbohydrate, low-saturated fat; LDL-C = LDL cholesterol; non-HDL-C = non-HDL cholesterol; TC = total cholesterol.

Atherogenic Dyslipidemia

- Significantly different between groups, P<0.05 (one-way ANOVA). ADMF = alternate-day modified fasting.

Paleo Diet and Type 2 Diabetes Mellitus

- Foods high in sugar/refined flour (CHO) may induce or amplify
- Replacing those CHO with protein is beneficial
- High-fiber, low sugar/refined CHO
- PREDIMED study

Atherogenic Dyslipidemia

- Values are mean ± SD, = 40. Means without a common letter differ, P < 0.05. The following traits were log-transformed prior to statistical analysis: TG, HDL-C, large VLDL, medium VLDL, small VLDL, total LDL, large LDL, medium LDL, small LDL, and very small LDL. HDL-C = HDL cholesterol; LCHSF = lower carbohydrate, high-saturated fat; LCLSF = lower carbohydrate, low-saturated fat; LDL-C = LDL cholesterol; non-HDL-C = non-HDL cholesterol; TC = total cholesterol.

Atherogenic Dyslipidemia

- Significantly different between groups, P<0.05 (one-way ANOVA). ADMF = alternate-day modified fasting.

Paleo Diet and Type 2 Diabetes Mellitus

- Foods high in sugar/refined flour (CHO) may induce or amplify
- Replacing those CHO with protein is beneficial
- High-fiber, low sugar/refined CHO
- PREDIMED study

Atherogenic Dyslipidemia

- Values are mean ± SD, = 40. Means without a common letter differ, P < 0.05. The following traits were log-transformed prior to statistical analysis: TG, HDL-C, large VLDL, medium VLDL, small VLDL, total LDL, large LDL, medium LDL, small LDL, and very small LDL. HDL-C = HDL cholesterol; LCHSF = lower carbohydrate, high-saturated fat; LCLSF = lower carbohydrate, low-saturated fat; LDL-C = LDL cholesterol; non-HDL-C = non-HDL cholesterol; TC = total cholesterol.

Atherogenic Dyslipidemia

- Significantly different between groups, P<0.05 (one-way ANOVA). ADMF = alternate-day modified fasting.

Paleo Diet and Type 2 Diabetes Mellitus

- Foods high in sugar/refined flour (CHO) may induce or amplify
- Replacing those CHO with protein is beneficial
- High-fiber, low sugar/refined CHO
- PREDIMED study

Atherogenic Dyslipidemia

- Values are mean ± SD, = 40. Means without a common letter differ, P < 0.05. The following traits were log-transformed prior to statistical analysis: TG, HDL-C, large VLDL, medium VLDL, small VLDL, total LDL, large LDL, medium LDL, small LDL, and very small LDL. HDL-C = HDL cholesterol; LCHSF = lower carbohydrate, high-saturated fat; LCLSF = lower carbohydrate, low-saturated fat; LDL-C = LDL cholesterol; non-HDL-C = non-HDL cholesterol; TC = total cholesterol.

Atherogenic Dyslipidemia

- Significantly different between groups, P<0.05 (one-way ANOVA). ADMF = alternate-day modified fasting.

Paleo Diet and Type 2 Diabetes Mellitus

- Foods high in sugar/refined flour (CHO) may induce or amplify
- Replacing those CHO with protein is beneficial
- High-fiber, low sugar/refined CHO
- PREDIMED study

Atherogenic Dyslipidemia

- Values are mean ± SD, = 40. Means without a common letter differ, P < 0.05. The following traits were log-transformed prior to statistical analysis: TG, HDL-C, large VLDL, medium VLDL, small VLDL, total LDL, large LDL, medium LDL, small LDL, and very small LDL. HDL-C = HDL cholesterol; LCHSF = lower carbohydrate, high-saturated fat; LCLSF = lower carbohydrate, low-saturated fat; LDL-C = LDL cholesterol; non-HDL-C = non-HDL cholesterol; TC = total cholesterol.

Atherogenic Dyslipidemia

- Significantly different between groups, P<0.05 (one-way ANOVA). ADMF = alternate-day modified fasting.

Paleo Diet and Type 2 Diabetes Mellitus

- Foods high in sugar/refined flour (CHO) may induce or amplify
- Replacing those CHO with protein is beneficial
- High-fiber, low sugar/refined CHO
- PREDIMED study

Atherogenic Dyslipidemia

- Values are mean ± SD, = 40. Means without a common letter differ, P < 0.05. The following traits were log-transformed prior to statistical analysis: TG, HDL-C, large VLDL, medium VLDL, small VLDL, total LDL, large LDL, medium LDL, small LDL, and very small LDL. HDL-C = HDL cholesterol; LCHSF = lower carbohydrate, high-saturated fat; LCLSF = lower carbohydrate, low-saturated fat; LDL-C = LDL cholesterol; non-HDL-C = non-HDL cholesterol; TC = total cholesterol.

Atherogenic Dyslipidemia

- Significantly different between groups, P<0.05 (one-way ANOVA). ADMF = alternate-day modified fasting.
Diet and NAFLD

- No consensus what diet best but moderate carbohydrates (40%-45%) + with increased MUFA and omega-3 PUFA + reduced SFAs may be beneficial
- Reduce SSB and added sugar and refined carbohydrates
- Vitamin E: Benefit in non-diabetic patients with NASH
- Polyphenols: Reduce liver fat accumulation

NAFLD, Diet, and Microbiome

- Lifestyle management first-line therapy, but optimal diet composition uncertain
- Weight loss MOST important
 - Greater weight loss with MUFA-enriched diet
 - Improved menstrual cycle with low GI diet
 - Increased free androgen index for high CHO diet
 - Greater reductions in IR, fibrinogen, total and HDL cholesterol
 - Improved QOL with low GI diet
 - Improved depression and self-esteem with high-protein diet

Diet and PCOS

- Healthful dietary patterns play an important role in the prevention and treatment of IR and associated conditions
- The optimal macronutrient composition of a healthful diet for IR and associated diseases has not been established, allowing for some flexibility in dietary approaches, which is helpful for compliance
- A healthful dietary pattern is naturally rich in beneficial micronutrients and phytoneutrients, although supplementation may be beneficial in some situations

Other Lifestyle Considerations for IR

- Sit less
- Boost exercise intensity (HIIT, HIRT)
- Sleep better
- Avoid tobacco
- Manage stress (meditation)
- Medications

What’s the “Take Home”?

- Healthful dietary patterns play an important role in the prevention and treatment of IR and associated conditions
- The optimal macronutrient composition of a healthful diet for IR and associated diseases has not been established, allowing for some flexibility in dietary approaches, which is helpful for compliance
- A healthful dietary pattern is naturally rich in beneficial micronutrients and phytoneutrients, although supplementation may be beneficial in some situations
Questions?

Special thanks to Drs. Zhaoping Li (VP, NBPNLS) and Mike Rothkopf (President, NBPNLS) for their assistance with this presentation.